J9.com

10年治理废气专业公司 集设计、制造、销售、服务为一体

15268568732

喷淋塔 风机 污水池加盖 光催化 活性炭吸附箱 低温等离子 一体成型PE喷淋塔
  • 低温等离子净化设备
  • 本站编辑:杭州绿然环保设备有限公司发布日期:2018-07-17 08:37 浏览次数:
低温等离子体废气处理

      低温等离子体废气处理  随着全球经济的发展,环境污染问题日益突出,各种类型的环境污染层出不穷,严重危及了人类的健康与生存。为了人类自身的安危,治理环境问题迫在眉睫。近年,全球涌现出许多治理环境问题的高新技术,如超声波、光催化氧化、低温等离子体、反渗透等,其中低温等离子体作为一种高效、低能耗、处理量大、操作简单的环保新技术来处理有毒及难降解物质,是近来研究的热点。      
      低温等离子体技术应用范围广,气体的流速和浓度对于气态污染物治理技术应用来说是两个非常重要的因素。生物过滤和燃烧技术能应用于较高浓度范围,但却受气体的流速所限;电子束照射技术仅有一非常窄的气体流速范围。而低温等离子体技术对气体的流速和浓度都有一个很宽的应用范围,其应用广泛不言而喻。等离子体技术工艺简单,吸附法要考虑吸附剂的定期更换,脱附时还有可能造成二次污染;燃烧法需要很高的操作温度;联合催化法中,催化剂存在选择性,某些条件(如温度过高)会造成催化剂失活,光催化法只能利用紫外光等;生物法要严格控制pH值、温度和湿度等条件,以适合微生物的生长。而低温等离子体技术则较好的克服了以上技术的不足,反应条件为常温常压,反应器结构简单,并可同时消除混合污染物(有些情况还具有协同作用),不会产生二次污染等。就经济可行性来说,低温等离子体反应装置本身系统构成就单一紧凑,在运行费用方面,微观来讲,因放电过程只提高电子温度而离子温度基本保持不变,这样反应体系就得以保持低温,所以不仅能量利用率高,而且使设备维护费用也很低。     
      低温等离子体技术在气态污染物治理方面优势显著。其基本原理是在电场的加速作用下,产生高能电子,当电子平均能量超过目标治理物分子化学键能时,分子键断裂,达到消除气态污染物的目的。1980年代,日本东京大学S.Masuda教授提出的高压脉冲电晕放电法是常温常压下得到低温等离子体的比较简单、比较有效的方法。它已成为目前的研究前沿,也正越来越多的用于气态污染物的治理。     


低温等离子体去除污染物的机理:   
    

 

等离子体化学反应过程中,等离子体传递化学能量的反应过程中能量的传递大致如下:
      (1) 电场+电子→高能电子
      (2) 高能电子+分子(或原子)→(受激原子、受激基团、游离基团) 活性基团 
      (3)  活性基团+分子(原子)→生成物+热 
      (4)  活性基团+活性基团→生成物+热      
      从以上过程可以看出,电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。        
低温等离子体去除污染物的原理:      
      低温等离子体技术处理污染物的原理为:在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在10ev ,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。作为环境污染处理优先域中的一项具有极强潜在优势的高新技术,等离子体受到了国内外相关学科界的高度关注。       
低温等离子体技术在环境工程中的应用:      
      低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入人体,直接对人体的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物) 的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。      
      降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等, 对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此, 目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。       
是否是低温等离子体处理技术的简单判断方法:        
      如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断:  ① 在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作低温体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。 ② 低温等离子体处理系统必须要有一定的放电处理功率。通常需要在2~5瓦时/米3 。即1000米3 /时的风量需要处理的电功率为2KW~5KW。如果号称1000米3 /时的风量只需要几十或几百瓦的电功率,则比较多也就是静电(除尘)处理或局部处理而已。要想分解VOCs没有一定的能量是不可能的。  
低温等离子体处理设备的特点:      
     1、操作方便:低温等离子体设备,操作简单,方便.无需专人看管,如遇故障自动停机报警。     
     2、能耗低:低温等离子体处理烟气,运行费用低廉,约2~5瓦时/米3 。     
    3、运行环境要求低:在-60℃~+300℃的环境内均可正常运转,特别是在潮湿,甚至空气湿度饱和的环境下仍可正常运行。      
     4、设备使用寿命长:本设备抗氧化性强,在酸性气体中耐腐蚀。
     5、处理气体:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯 分解化合物:低分子化合物,CO2、H2O等  特点:体积小,占地面积少,能耗低,操作方便,低碳环保,效率高   应用优先域    适用范围:石油、制药、油漆、印刷、涂料、塑料、电子、食品、橡胶、化工、制药厂、污水处理厂、垃圾转运站、污水处理站、卷烟厂、医院、餐饮、香精香料厂、屠宰场、公共场所等有毒有害污染物气体、恶臭气体的净化处理。




 



J9.com